

CO-OPERATION BETWEEN NORDIC MARITIME UNIVERSITIES AND DNV GL 17th WORKSHOP 2016

Hamburg University of Technology 21-22 January 2016

Ship Structural Design & Analysis

Analyze of the medium-sized shipyard condition for shipbuilding

FACULTY OF MARITIME TECHNOLOGY AND TRANSPORT

Economic crisis

Brent crude oil price, 1988-2015

Source: Bloomberg

Economic crisis

Competitors

New Orders by Main Shipbuilding Areas

Competitors

World New Orders by Ship Types

Technical challenges

Technical challenges

Conclusion

Strengths of EU shipyards

- Level of innovation
- Innovative SMEs (Small and medium-sized enterprises) and strong position of marine equipment industry
- Strong connections between shipyards and marine equipment suppliers
- Efficiency
- Specialization in niche markets

Conclusion

Weaknesses

- Cost levels (wage levels and steel prices)
- Access to skilled labour
- Access to finance
- Potential difficulties in knowledge protection
- Fragmented government responses

Affected factors

Location

DISTANCES

12 km from the German border

65 km from the Baltic Sea

127 km from Berlin

281 km from Copenhagen

505 km from Prague

450 km from Warsaw

Affected factors

Collaboration - Cluster

Affected factors

Polish Cluster

Labour resource

Labour cost

Affected factors

Shipbuilding process

Affected factors

Shipbuilding process

Level	Description
1	Early 1960s – welded hulls, small cranes (<50 t), multiple open berths, Manual operating systems.
2	Late 1960s/ early 1970s, larger cranes (<250 t), some mechanization and pre-outfitting, numerical controlled metal cutting machines. Some computerized systems.
3	Late 1970s, large capacity cranes (>350 t). High degree of mechanization and use of computers. Block manufacturing shops.
4	Technology advances of the middle 1980s. Generally large docks, protected microclimate zones, High lifting capacity of Goliath cranes (>800 t)
5	1990s, with automation, integration of operating systems, use of CAD, CAM, CAPP Increased automation and robotics in welding, pipe shops.
6	2000 to present: large, renovated and some completely covered shipyards, large grand and ultra blocks to 3000 t, mainly robotics for welding and part assembly.

Shipbuilding process

Steel fabrication

Steel fabrication

Steel fabrication

Steel fabrication

Steel fabrication

FACULTY OF MARITIME TECHNOLOGY AND TRANSPORT

Bending

FACULTY OF MARITIME TECHNOLOGY AND TRANSPORT

Bending

Welding

Submerged arc welding (SAW)

Gas tungsten arc welding (GTAW)

Transportation

Erection

Painting

Painting

Launching

Launching

Launching

Service vessels

Fishing vessels

Ferry

Ship Structural Design & Analysis

CO-OPERATION BETWEEN NORDIC MARITIME UNIVERSITIES AND DNV GL 17th WORKSHOP 2016

Hamburg University of Technology 21-22 January 2016

Thank you

Duong Nguyen Thua Prof. Tadeusz Graczyk

FACULTY OF MARITIME TECHNOLOGY AND TRANSPORT

